上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。
Log-Polar変換なのですが、霊長類の網膜のモデルらしいです。
中心部は解像度が高いのですが、周辺部は低いという特性らしいです。

以下のような式で変換をします。(極座標変換でのrにlogをとったものです。)
logpolar.png


ですが、今まで行った回転のときのように、どの変換先の座標は元画像のどの位置を参照するかと考えます。
すなわち以下の逆変換を使います。
logpolar2.png



ソース


OpenCVのやりかたを真似したため、一部のみ抜粋です。
bmpが入力画像、lpcが出力画像です。
また、Mはformから入力された値を使用しました。256x256だと40くらいがよさそうです。
BiLinearInterpolationは以前の補間のさいに使用したものです。

画像を回転させる際の画素を補間するコード | 詠み人知らずの備忘録


Bitmap lpc = new Bitmap(bmp.Width, bmp.Height);

int cx = lpc.Width / 2;
int cy = lpc.Height / 2;

double M = Convert.ToDouble(textBox1.Text);

for (int i = 0; i < lpc.Width; i++)
{
    for (int j = 0; j < lpc.Height; j++)
    {
        double r = Math.Exp((double)i / (double)M);
        double x = r * Math.Cos(2 * Math.PI * j / lpc.Height) + cx;
        double y = r * Math.Sin(2 * Math.PI * j / lpc.Height) + cy;
        
        if (0 < x && x < bmp.Width - 1 && 0 < y && y < bmp.Height - 1)
        {
            Color bmpCol = BiLinearInterpolation(x, y, bmp);
            lpc.SetPixel(i, j, bmpCol);
        }

    }
}



結果

変換した結果、(x,y)と(rho,phi)の関係がどのような対応になるのかは、下記のサイトがイメージがつきやすいと思います。
Log polar transform - Rhea



※クリックで拡大します。

【元画像】
Lenna

【変換画像】
Lenna_log.png

【元画像】
Lenna_90.png

【変換画像】
Lenna_log90.png



画像の回転が、変換後の画像の下への移動としてあらわされています。
この考え方を、位相限定相関法(POC)と供に使用すると、角度のズレを判別できるためより便利な手法となります。(RIPOCという手法らしいです。)

位相限定相関法(POC) - スズメレンダラー・クマ将棋の開発日記

関連記事
スポンサーサイト
コメント
コメントの投稿
Contributor
Comment
トラックバック URL
URL
このエントリーの固定リンク
トラックバック
FC2カウンター
プロフィール

Author:詠み人知らず
プログラム好きな名もなき凡人がお送りしています。(得意とは言っていない
最近の興味はPython、C#、Matlab(Octave)、画像処理、AR(拡張現実)、統計などなど・・・

気分で思いついたことを書くため話題に一貫性がないかもしれません。

カレンダー
08 | 2017/03 | 09
- - - 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 -
最新記事
タグクラウドとサーチ

カテゴリ
最新コメント
最新トラックバック
月別アーカイブ
上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。